
Evaluating the Ability of Remote Sensing Observations to Identify Significantly
Severe and Potentially Tornadic Storms

THEA N. SANDMÆL AND CAMERON R. HOMEYER

School of Meteorology, University of Oklahoma, Norman, Oklahoma

KRISTOPHER M. BEDKA

NASA Langley Research Center, Hampton, Virginia

JASON M. APKE

Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

JOHN R. MECIKALSKI

Department of Atmospheric Sciences, University of Alabama in Huntsville, Huntsville, Alabama

KONSTANTIN KHLOPENKOV

Science Systems and Applications, Inc., Hampton, Virginia

(Manuscript received 15 September 2018, in final form 13 September 2019)

ABSTRACT

Remote sensing observations, especially those from ground-based radars, have been used extensively to

discriminate between severe and nonsevere storms. Recent upgrades to operational remote sensing networks

in the United States have provided unprecedented spatial and temporal sampling to study such storms. These

networks help forecasters subjectively identify storms capable of producing severe weather at the ground;

however, uncertainties remain in how to objectively identify severe thunderstorms using the same data. Here,

three large-area datasets (geostationary satellite, ground-based radar, and ground-based lightning detection)

are used over 28 recent events in an attempt to objectively discriminate between severe and nonsevere storms,

with an additional focus on severe storms that produce tornadoes. Among these datasets, radar observations,

specifically those at mid- and upper levels (altitudes at and above 4 km), are shown to provide the greatest

objective discrimination. Physical and kinematic storm characteristics from all analyzed datasets imply that

significantly severe [$2-in. (5.08 cm) hail and/or$65-kt (33.4m s21) straight-line winds] and tornadic storms

have stronger upward motion and rotation than nonsevere and less severe storms. In addition, these metrics

are greatest in tornadic storms during the time in which tornadoes occur.

1. Introduction

Severe and tornadic storms have been extensively

studied using ground-based weather radar and satel-

lite observations during the past four decades. A com-

mon goal of past research efforts has been enabling

improvements in tornado prediction, which can save

lives. Substantial efforts are almost always underway to

improve tornado warnings, including ongoing projects

like Warn-on-Forecast and the Probability of Severe

(ProbSevere) model (Stensrud et al. 2009; Cintineo et al.

2018). Despite previous efforts, the time from a warning

being issued to a tornado occurring, commonly known

as the warning lead time, has stayed the same from 1986

to 2011, averaging 18.5min (Stensrud et al. 2013; Brooks

and Correia 2018).

To distinguish tornadic storms from nontornadic

storms, forecasters and researchers have commonly

utilized unique radar signatures at low levels (within a

few kilometers of Earth’s surface) that often precede

tornadogenesis, such as hook echoes, weak echo regions,

inflow notches, bowing line segments, and rotation visibleCorresponding author: Thea N. Sandmæl, thea@ou.edu
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through radial velocity couplets, which were key to

early improvements in tornado warnings (Fujita 1958;

Browning and Donaldson 1963; Lemon and Doswell

1979; Przybylinski 1995). More recently, tornado

warning decision making has increasingly leveraged

the development and strength of low-level rotation,

visual reports from human spotters, and the presence of

unique signatures in dual-polarization radar, such as

the tornadic debris signature (Ryzhkov et al. 2005). For

broader discrimination between severe and nonsevere

storms using radar observations, weak echo regions,

mesocyclones, vertically integrated parameters based

on radar reflectivity, and dual-polarization signatures

have been used (Greene and Clark 1972; Lemon et al.

1977; Amburn and Wolf 1997; Kumjian and Ryzhkov

2008). In comparison, remote sensing observations of

the upper levels of storms (especially those from sat-

ellite) have been increasingly used for severe storm

detection due to recent improvements in spatiotem-

poral sampling (e.g., Bedka et al. 2015; Gravelle et al.

2016). Satellite-observed cloud-top features associated

with severe storms include rapid cloud-top cooling,

anomalous cloud-top flow characteristics (strong di-

vergence and couplets of high positive and negative

vorticity), overshooting storm tops (OTs), and the

‘‘Enhanced-V’’ signature and other signatures related

to above-anvil cirrus plumes (McCann 1983; Mecikalski

and Bedka 2006; Cintineo et al. 2013; Bedka et al. 2015;

Apke et al. 2016; Line et al. 2016; Homeyer et al. 2017).

All of these features are hypothesized to be associated

with strong upward motion within severe storms.

Model forecasts and simulations have played a large

role in understanding the processes and environments

that lead to severe and tornadic storms (e.g., Thompson

et al. 2003; Cintineo et al. 2014; Coffer et al. 2017). The

probability of all severe weather (tornadoes, hail, and

straight-line winds) is known to increase with increas-

ing values of convective available potential energy

(CAPE) and vertical wind shear (typically in a layer

0–6 km AGL). For tornadic storms, additional envi-

ronmental variables such as the significant tornado

parameter, helicity, or the supercell composite parame-

ter, have shown skill in distinguishing regions with fa-

vorable conditions for tornadic storm formation and

where the most intense tornadic storms are likely to form

(e.g., Stensrud et al. 1997; Rasmussen and Blanchard

1998; Thompson et al. 2003, 2012). High-resolution

modeling studies demonstrate that low-level streamwise

horizontal vorticity is a key ingredient in environments

favorable for tornadogenesis, as tilting of this vorticity

into the vertical dimension helps maintain a strong,

steady, low-level mesocyclone (e.g., Coffer et al. 2017;

Orf et al. 2017). In addition to the tornadogenesis process,

simulations of tornadic supercells have further indicated

that wider updrafts can lead to more intense tornadoes

if it is assumed that the scale and intensity of the tor-

nadic circulation is associated with the scale and in-

tensity of the rotating updraft at higher altitudes

(Trapp et al. 2017), but these model results have been

demonstrated to be sensitive to the design of the model

simulations (Coffer and Markowski 2018).

Forecasting the potential for severe and tornadic

storms hours to days in advance has largely been ac-

complished using predicted or measured properties of

the near-storm environment (e.g., Cintineo et al. 2013;

Parker 2014). These include winds, temperature, mois-

ture, and related variables such as CAPE and vertical

wind shear. While both individual environmental vari-

ables and unique combinations of different variables

have proven to be useful predictors of severe storms

and tornadoes, their utility in the warning process is

limited in part by the lack of observations available at

scales necessary to resolve the near-storm variability in

real time (Thompson et al. 2003; Parker 2014). In ad-

dition, the stochastic nature of internal storm dynamics

results in considerable overlap in the parameter spaces

occupied by tornadic and nontornadic storms, partic-

ularly in the case of weak tornadoes. This overlap

makes it challenging for a forecaster to determine

which storms will and will not be tornadic within a

given environment (Anderson-Frey et al. 2016).

Operational observing systems in the United States

provide measurements of storms at high spatial and

temporal resolution and for many years. The Next-

Generation Weather Radar (NEXRAD) network

provides three-dimensional observations of storms at

approximately 5-min increments (Crum and Alberty

1993). Satellite imagery from the Geostationary Op-

erational Environmental Satellite (GOES) constella-

tion provides cloud-top visible and infrared (IR)

wavelength measurements of storms at intervals of

15min or less (Menzel and Purdom 1994). The GOES-

16 Advanced Baseline Imager provides imagery with

temporal resolutions of 30 s to 1min over 1000 km 3
1000km regional domains, and every 5min over much of

North America (Schmit et al. 2017). Prior to GOES-16,

GOES-14 was used in experimental mode to acquire 1-

min resolution data, with a focus on severe storm and

high-impact weather analyses (Schmit et al. 2013).

This study seeks to evaluate the utility and limitations

of remote sensing observations to objectively discrim-

inate between severe and nonsevere storms using a

fusion of recent high-resolution radar, satellite, and

lightning datasets. In addition, tornadic storms are

evaluated separately from the remaining population

of severe storms (those producing severe hail and
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straight-line winds) given their unique impacts and

societal relevance. The goal of this work is to determine

the value of modern remote sensing observations for

early objective discrimination between tornadic, se-

vere, and nonsevere storms. Below, novel results are

presented that reveal significant differences in inferred

upward motion and rotation between a large sample of

severe and nonsevere storms. These metrics reach a

maximum in tornadic storms during the time torna-

does occur. Based on these results, an objective data-

based approach for tornadic storm identification and

short-term prediction is developed for performance

evaluation.

2. Data and methods

a. Cases

This study examines 27 single-day severe weather

events in the United States that occurred during 2011–

16. These cases comprise more than 7000 storms defined

using NEXRAD data, 273 of which produced tornadoes

(Table 1). Severe weather days were chosen to capture a

wide range of environmental conditions, severe weather

frequencies, and tornado intensity. Nine of the 27 days

were chosen due to the availability of GOES-14 super

rapid scan data (1-min intervals), which is necessary to

calculate satellite-based cloud-top divergence (Apke

et al. 2016, 2018). The days when GOES-14 data were

available are in bold in Table 1. Additional case studies

were added to represent a variety of severe weather

events from widespread tornado outbreaks in late

spring to wintertime mesoscale convective systems.

Radar-derived storm tracks (see section 2f) from all 27

cases are shown in Fig. 1. Most storms analyzed in this

study are clustered in the central United States, but

some events extend into the eastern United States and

the Mississippi Valley.

b. Radar data

NEXRADLevel II data (i.e., volumes in range, azimuth,

and elevation relative to the location of a radar) were re-

trieved from the National Centers for Environmental

TABLE 1. Dates, number of storms, number of tornadic storms, number of tornadoes, dominant storm mode (discrete or mesoscale

convective system), and the longitude–latitude coordinates of the analysis domain for the 27 severe weather days analyzed in this study.

Dates in bold represent days whereGOES-14 and ENTLN data were available, with one exception (ENTLN data were not obtained for

the 4 Jun 2015 case).

Date

No. of storms

(No. severe)

No. of tornadic storms

(No. of tornadoes) Dominant storm mode

Analysis domain coordinates

[lon0, lat0; lon1, lat1] (8W, 8N)

22 May 2011 469 (68) 21 (59) Discrete [95.5, 35.5; 87.0, 46.5]

24 May 2011 450 (88) 24 (64) Discrete [101.5, 32.0; 92.5, 39.0]

9 Apr 2012 30 (4) 1 (6) Discrete [101.0, 33.5; 95.0, 37.5]

13 Apr 2012 97 (6) 3 (14) Discrete [100.5, 34.5; 95.0, 37.0]

14 Apr 2012 313 (30) 23 (96) Discrete [101.0, 36.0; 95.5, 41.5]

20 May 2013 246 (67) 16 (35) Discrete [99.0, 31.5; 93.0, 40.0]

31 May 2013 391 (63) 14 (36) Discrete [99.0, 34.5; 87.0, 40.5]

12 Jun 2013 555 (126) 10 (21) MCS [96.0, 38.0; 80.0, 45.0]

27 Apr 2014 223 (57) 8 (21) Discrete [99.0, 34.0; 91.5, 42.0]

10 May 2014 112 (40) 2 (5) Discrete [99.0, 36.0; 90.0, 43.0]

11 May 2014 330 (63) 10 (41) Discrete [102.0, 36.0; 92.0, 44.5]

21 May 2014 54 (10) 2 (5) Discrete [106.0, 37.5; 101.0, 41.0]

16 Jun 2014 406 (66) 10 (40) Discrete [100.0, 41.0; 89.0, 44.0]

17 Jun 2014 155 (22) 7 (16) Discrete [106.0, 41.5; 94.5, 48.0]

18 Jun 2014 79 (8) 5 (13) Discrete [100.0, 43.5; 98.0, 46.5]

13 Oct 2014 707 (80) 17 (24) MCS [95.5, 29.5; 84.5, 40.5]

6 May 2015 202 (53) 23 (52) Discrete [100.0, 32.5; 95.5, 41.5]

19 May 2015 329 (32) 13 (36) Discrete [103.0, 29.0; 94.0, 37.0]

24 May 2015 123 (16) 1 (10) MCS [105.0, 36.0; 97.0, 41.0]

25 May 2015 669 (64) 18 (28) MCS [105.0, 25.0; 89.0, 41.0]

27 May 2015 387 (48) 8 (18) Discrete [104.0, 29.5; 96.0, 41.5]

4 Jun 2015 290 (42) 3 (23) Discrete [108.0, 34.0; 93.0, 43.0]

23 Dec 2015 137 (34) 7 (26) MCS [92.5, 33.5; 84.0, 42.0]

15 Apr 2016 160 (28) 4 (12) Discrete [104.0, 34.5; 99.0, 40.5]

9 May 2016 199 (64) 10 (26) Discrete [100.0, 33.0; 94.0, 41.5]

24 May 2016 150 (35) 11 (44) Discrete [104.0, 35.5; 97.0, 41.0]

25 May 2016 17 (6) 2 (6) Discrete [99.5, 35.5; 95.0, 40.0]

Total 7280 (978) 273 (777) – –
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Information (NCEI) (NOAA/NWS/ROC 1991). The

NEXRAD network in the contiguous United States

consists of more than 140 WSR-88D S-band (10–11 cm

wavelength) radars that observe precipitation parti-

cles. All NEXRAD observations used in this study

were obtained at a range resolution of 250m, an azi-

muthal resolution of 0.58 for the lowest 3–4 elevations

and 1.08 otherwise, and typically at 14 elevations per

volume. Each Level II volume includes (at a minimum)

the radar reflectivity at horizontal polarization ZH

that is related to the size and/or density of cloud and

precipitation particles in a radar volume and is in units

of dBZ, and the radial velocity VR, a measure of the

motion of cloud and precipitation particles toward and

away from the radar location, in units of ms21. De-

pending on the characteristics of the operational scan-

ning strategy, the expected uncertainty in NEXRAD

observations is up to 1 dB for ZH and up to 1m s21 for

VR. These uncertainties can lead to even greater un-

certainties in many of the derived variables outlined

below, but such errors are typically smaller than ob-

served differences between storm types [e.g., see

documented errors in observables and derived vari-

ables in OFCM (2005, 2006)].

The radar data are processed using the four-dimensional

space–time merging methods described in Homeyer

et al. (2017) and references therein, which resulted in

volumes of the radar variables at 2-km horizontal

resolution, 1-km vertical resolution, and 5-min tem-

poral resolution over the entire extent of each anal-

ysis domain (see also information available at http://

gridrad.org). Merging of VR from multiple radar vol-

umes onto a common grid is challenging, largely due to

the fact that VR is a measure of the motion of scatterers

toward and away from the radar, such that any given

measurement has a unique geometry and thus can vary

significantly in magnitude and sign compared to a

measurement made at the same location from a differ-

ent radar. To overcome this challenge, derivatives of

VR must be merged instead. For this study, the radial

derivative of VR (radial divergence) and the azimuthal

derivative (azimuthal shear) are merged into multiradar

volumes, both of which are computed using centered

differencing. These yield the approximate half compo-

nents of the divergence and rotation, which will be re-

ferred to as simply divergence and rotation in the

remainder of the paper. Given the expected uncertainties

in VR, the resulting uncertainties in divergence and ro-

tation estimates should be less than 0.004 s21, with un-

certainties in derived rotation decreasing by more than

an order of magnitude out to the farthest ranges ob-

served by a radar (due to increasing azimuthal length

scales; see also the discussion at the end of section 3).

This estimate is based on calculations using fixed range

resolution varying azimuthal resolution and assuming

maximum error in winds:61m s21 at each bound of the

derivative, such that the maximum DVR error expected

is 2m s21. For the azimuthal derivative, the distance is

2Du for the derivative. For 0.58 azimuthal sampling,

Du increases;875m per 100 km range. For 18 azimuthal

sampling (most elevations), Du increases ;1750m per

100 km (i.e., twice that of 0.58 resolution). To estimate

the expected uncertainty in the azimuthal derivative, it

is simply (2m s21)/(2Du). For ranges beyond 30km, the

uncertainty for the azimuthal derivative is much less

than 0.004 s21 in all cases. For the radial (i.e., range)

derivative, the uncertainty is (2m s21)/(500m) every-

where (i.e., 0.004 s21).While it is not possible to evaluate

the uncertainties of these and other derived variables

in greater detail due to a lack of finer-resolution aux-

iliary datasets, we expect the errors in rotation and

divergence in our multiradar merged data to be re-

duced further by following several quality-control steps

outlined below.

First, since VR is prone to large errors in magnitude

and sign due to aliasing (i.e., winds that exceed the maxi-

mum detectable VR at a given operating frequency—the

Nyquist velocity—and become ‘‘folded’’), the winds

must be dealiased prior to computing the derivatives

(Doviak and Zrnić 1993). Dealiasing is performed

using the Python ARM Radar Toolkit (Py-ART;

Helmus and Collis 2016). For use in this merging

procedure, a Py-ART routine is invoked that does

not require a reference atmospheric wind profile and

is more computationally efficient than alternative

approaches—dealias-region based, which accomplishes

dealiasing by modeling the problem as a dynamic

network reduction.

FIG. 1. Storm tracks of at least 30min in length from all 27 cases.

Variation in color is arbitrary and meant to improve interpretation

of overlapping storms.
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Following dealiasing, random fluctuations of VR in

each azimuthal sweep (a 3608 scan made at a single

elevation) are further suppressed by applying a 3 3 3

median filter and by using a 5-gate running-mean range

filter prior to computing the radial and azimuthal de-

rivatives (in that order). The derivatives (divergence

and rotation) are then calculated using the quality

controlled VR and merged into the large-area, multi-

radar dataset following the procedure in Homeyer

et al. (2017). To avoid potential artifacts within weak or

nonmeteorological radar echo, VR derivatives are only

analyzed within ZH $ 30 dBZ in this study. Similar

techniques describe known uncertainties that occur

with VR derivatives in range and azimuthal distance

(Smith and Elmore 2004), which can be as large as

620% relative to a known (or prescribed) value. The

divergence maximum above an altitude of 8 km (upper-

level; example in Fig. 2a) and the convergencemaximum—

or divergence minimum—below 3km (lower-level; Fig.

2b), as well as their column-maximum values, are

calculated for each storm at each time step. Maxi-

mum cyclonic rotation is also calculated for the lower-

and upper-level altitudes (Figs. 2d,e), as well as for the

midlevels (4–7 km). Due to the nature of radar sampling,

FIG. 2. (a)–(i) Example maps of variables valid at 2230 UTC 11 May 2014 in Kansas and Nebraska. 15- and 45-dBZ 0–5 km column-

maximum reflectivity values are contoured in black (increasing thickness for increasing reflectivity) and superimposed inmost panels. Red

contours in (f) signify satellitemAMVdivergence in 53 1024 s21 increments with increasing thickness starting from 53 1024 s21. Satellite

products were subject to the parallax correction method described in section 2c.
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the low-level variables will be limited by the distance to

the radar, and thus will have much fewer data points

than the mid- and upper-level variables.

Echo-top altitudes are computed for this study using

multiple ZH thresholds, with the majority of analysis

conducted using 40-dBZ echo-top altitudes (Fig. 2g).

The echo-top altitudes are computed at every hori-

zontal grid point by finding the highest altitude where

ZH exceeds the specified threshold, provided that ZH is

also greater than the threshold in the next two lowest

altitude layers.

Velocity spectrum width, or the standard deviation of

VR estimates within a radar volume, is also extracted

from the radar data where ZH $ 30 dBZ (Fig. 2h).

Spectrum width is influenced by several factors, in-

cluding substantial contributions from horizontal shear

in VR at low levels and turbulence at any level (Doviak

and Zrnić 1993). The turbulence component has been

linked to updraft strength within convection and is

often a major contributor to spectrum width observa-

tions at altitudes in the middle and upper troposphere

(Feist et al. 2019). The column-maximum spectrum

width at each time step of each storm is calculated for

analysis in this study.

c. Satellite data

GOES imagery was retrieved from University of

Wisconsin–Madison Space Science and Engineering

Center (http://www.ssec.wisc.edu/) and NOAA (1994).

GOES is primarily a constellation of two operational

satellites that continuouslymonitor the weather over the

United States: GOES-West stationed at 1358W and

GOES-East at 758W nadir longitudes. For the time

period analyzed in this study, GOES-15 was opera-

tional in the west position and GOES-13 was opera-

tional in the east position. GOES-13 and GOES-15

provide visible and IR imagery at 5- to 15-min intervals.

A spare GOES satellite (GOES-14), positioned at

1058W, has been used for experimental super rapid

scan observations in preparation for GOES-R (1-min

frequency; SRSOR) during various periods since late

summer 2012 (Schmit et al. 2013). For nine severe

weather days (bolded in Table 1), 1-min imagery from

GOES-14 is used for analysis. For the remaining severe

weather days, imagery from GOES-13 is used. The

GOES-13 and GOES-14 imager 0.65mm visible wave-

length channel has a horizontal resolution of ;1 km at

nadir, while the 10.7mm IR channel has a horizontal

resolution of ;4 km at nadir and an absolute accuracy

of #1K (Menzel and Purdom 1994).

Convective updrafts that penetrate through a thun-

derstorm anvil, known as overshooting tops or OTs,

produce texture in GOES visible-channel imagery due

to turbulent flow and shadowing induced by the updraft

penetration. An algorithm to detect and quantify this

texture has recently been developed that produces a

‘‘visible texture rating’’ product (Bedka and Khlopenkov

2016).Anvil clouds are identified using a two-step process

and then a search is performed within the anvils to

identify texture associated with penetrative updrafts.

The first step in anvil detection is based on thresholding

of GOES visible reflectance based upon an empirical

model used to define how bright an anvil should be

at a given time of day and day of year. Spatial and

statistical analysis of the pixels that meet the day/time-

dependent threshold is performed to eliminate singu-

lar pixels and preserve those within a broad area

(greater than or equal to approximately 10 km2) of

near-uniform reflectance characteristic of anvil clouds.

Fourier-transform analysis of visible reflectance within

small (32 pixel) windows is then performed, yielding

a power spectrum for varying wavelengths in a 32 3
32-pixel domain. Typical OT signatures and concentric

gravity waves that often surround OTs produce the

strongest signal in a ringlike pattern with a wave-

length of;4–8 km. Pattern recognition is applied to the

power spectrum to identify ring patterns within this

wavelength range. The results of the pattern recogni-

tion analysis define the unitless visible texture rating

(Fig. 2c); the most coherent ring patterns are assigned a

high rating.

Another method for convective updraft identifica-

tion by GOES satellite involves objective identification

of vigorous anvil outflow in #1-min scanning rate in-

formation. This is achieved here using the Super Rapid

Scan Anvil Level flow system (SRSAL; Apke et al.

2016, 2018, and references therein). SRSAL objec-

tively identifies deep convection cloud-top flows with

mesoscale atmospheric motion vectors (mAMVs; Bedka

and Mecikalski 2005), which are point-source wind esti-

mates based on pattern recognition in a sequence of

GOES visible images.

SRSAL contains a cloud-top horizontal divergence

(CTD; Fig. 2f) product output to a 0.028 3 0.028 longitude–
latitude grid. When associating SRSAL CTD with in-

dividual storms, only data points with final smoothing

parameter [a from Hayden and Purser (1995), and

Apke et al. (2018)] values less than 0.5 are consid-

ered for analysis, as points with higher values are not

densely sampled by mAMVs. To mitigate sampling

errors in storms obscured by cirrus at higher altitudes, the

data points for CTD, as well as visible texture rating, are

also filtered by using only those points with a maximum

visible texture rating greater than 7, which is indicative

of a convective OT and gravity waves generated by the

OT (Bedka andKhlopenkov 2016).Note that SRSAL, like
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visible texture rating, is a visible-only product as it requires

the visible channel to operate. The maximum CTD is

calculated at each time step for each storm.

To extract satellite data along the path of the radar-

based storm tracks, corrections for parallax error (owing

to the viewing geometry of the satellite) are required.

Parallax error increases as the cloud-top altitude and

distance from satellite nadir increases (Vicente et al.

2002). Methods typically used to correct for parallax in-

volve converting IR cloud-top temperature to cloud-top

altitude using a reference tropospheric temperature pro-

file. However, these methods are prone to large errors for

deep convective anvils because high-altitude clouds may

either be (i) thermally adjusted to stratospheric temper-

atures that are warmer than the upper troposphere, or

(ii) be optically thin and thus mostly transparent in IR.

In this study, the merged radar observations are used to

correct for parallax error. In particular, the ZH 5 5 dBZ

echo-top altitude is used as a proxy for cloud-top height

to estimate parallax. These estimates are used to correct

the coordinates of the satellite imagery in order to

extract values coincident with the storm tracks.

d. Lightning data

The Earth Networks Total Lightning Network

(ENTLN) detects lightning using pulses in vertical electric

field measurements from parts of the 1Hz to 12MHz

frequency range from over 700 sites across the contiguous

United States (Liu and Heckman 2011). Individual pulses

are located in space and time by statistically solving over-

determined electrical signal time-of-arrival equations us-

ing measurements from at least 5 stations. Sources close

together in space and time are grouped into flashes, which

are binned into 0.088 3 0.088 longitude–latitude (;64km2)

flash density grids for analysis, designed to emulate the

spatial resolution of data to be provided by the Geo-

stationary Lightning Mapper instrument (Goodman

et al. 2013). Lightning activity is correlated with in-

tensification of updrafts (Schultz et al. 2017). When

upward motion in the mixed-phase (liquid and ice)

region of a cloud increases, hydrometeor collision

charging mechanisms typically become more effi-

cient and thus, lightning flashes become more fre-

quent (Deierling and Petersen 2008). ENTLN data

were available for eight of the nine GOES-14 severe

weather days. The maximum of the total lightning

flash density is extracted along each storm track for

analysis in this study, which consists of both cloud-to-

ground and intracloud flash density (Fig. 2i).

e. Tornado warnings

Tornado warnings from the NationalWeather Service

are used here to provide context on which storms

produced physical indications of possible tornadogenesis

and were publicly recognized by warning meteorol-

ogists. NWS warnings were obtained from the online

archive maintained by Iowa State University (Iowa

Environmental Mesonet 2017). The warnings are pro-

vided as shapefiles, with each warning consisting of a

start (issuance) and end (expiration) time and co-

ordinates of a polygon outlining the warned area. A

warning was linked to all storm tracks that passed

through the warning polygon during the time the

warning was valid.

f. Storm tracking

Analysis of all datasets on an individual storm basis in

this study is facilitated through objective radar-based

storm tracking. In particular, individual storm tracks are

computed for each severe weather day using an echo-top

algorithm described in Homeyer et al. (2017). Local

maxima in maps of Gaussian-smoothed echo-top alti-

tude are identified in each 5-min radar observation and

linked together in time if they lie within close proximity

to each other (#12.5 km). For this study, tracking is

accomplished through time linking of ZH 5 40 dBZ

echo-top maxima, filtered by the convective echo clas-

sification output by the Storm Labeling in 3 Dimensions

(SL3D) algorithm (Starzec et al. 2017). Tracked echo-

top maxima are required to exceed an altitude of 4 km

and be linked across 3 or more 5-min radar analyses.

Radar reflectivity images of the objectively tracked

storms were reviewed to manually identify and merge

discontinuous tracks that correspond to the same storm.

The quality-controlled storm tracks are then used to

extract maximum or minimum (in the case of conver-

gence and GOES IR brightness temperature) values

from each dataset within a 10-km radius of the storm

location at 1-min intervals, with observations made at

coarser resolution than 1-min interpolated linearly in

space and time to the storm-track location. Such in-

terpolation is only performed for data with time cover-

age gaps less than or equal to 5min. Severe Weather

Data Inventory (SWDI) tornado reports fromNCEI are

also added to the dataset and linked to the nearest storm

within 3km of the tornado path (NCEP 2017).

g. Data analysis

The tornadic storms are analyzed by extracting 1-min

data points within a 5-min window centered on 30 and

15min before the first tornado, 15 and 30min after the

last tornado, and during the entire time period of any

tornado. This allows assessment of the potential for

discrimination between tornadic and nontornadic

storms from each variable and for providing positive

lead times. Time periods prior to only the first tornado
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in each storm are evaluated (rather than those prior to

all individual tornadoes) to best isolate unique evo-

lutionary characteristics of tornadic storms before

they produce a tornado. Otherwise, time periods be-

tween successive tornadoes within a single storm may

bias the perceived evolution in storm-based analyses

and corresponding observational indicators of tornado

potential. Similarly, time periods following the last

tornado are analyzed to reveal the capacity for each

variable to capture a decreasing tornado threat. The

tornadic storms are compared to the most intense

30-min period of all tracked nontornadic storms (i.e.,

any storm with a persistent 40-dBZ echo top exceeding

4 km) and of nontornadic storms linked with severe hail

or wind reports. The most intense 30-min period is

defined as the615-min window centered on the storm-

maximum (or minimum) value observed for each sep-

arate variable. Therefore, the time periods considered

to be the most intense for the nontornadic storms could

differ between variables. The nontornadic storms are

separated into categories containing nonsevere, se-

vere [those containing $1 in. (2.54 cm) diameter hail

and $50 kt (25.7m s21) wind speeds at ground level],

and significant severe storms [those containing $2 in.

(5.08 cm) diameter hail and $65 kt (33.4m s21) wind

speeds at ground level]. Significant severe nontornadic

storms were not included in the severe nontornadic

storm category and neither severe storm category was

included in the nonsevere nontornadic category. While

many variables were analyzed during the course of this

study, the analysis presented here focuses on variables

that provided the greatest discriminatory ability from

each data source. Table 2 provides a concise list of all

variables analyzed and included in the remainder of

the paper.

The updraft strength within storms is inferred here

using a kinematic approach based on divergence ob-

servations. Kinematic approaches for inferring upward

motion involve vertical integration of the horizontal

wind divergence through a column with the assumptions

of an incompressible or anelastic atmosphere (e.g.,

O’Brien 1970). Strong upper-level divergence located at

altitudes above low-level convergence within convec-

tion (i.e., a two-layer divergence profile) implies strong

upward motion due to the conservation of mass in the

atmosphere. While the radar and satellite observations

can only measure winds within and atop storms, re-

spectively, the upper-level divergence alone can (with

assumptions) serve as a proxy for updraft strength in

deep convection.

The utility of upper-level divergence as a proxy for

updraft strength is primarily limited by variations in the

depth of analyzed storms and coarse vertical sampling. If

all storms spanned the same depth in the atmosphere

and had equivalent divergence profile shapes, differ-

ences in the upper-level divergence (or low-level con-

vergence) maxima would be proportional to differences

in vertical velocity. Since the vast majority of storms

analyzed in this study reach the tropopause and the

tropopause altitude varies by ,3 km across the 27 cases

analyzed, it is assumed that the differences in storm

depth have a minor impact on the use of upper-level

divergence as a proxy for updraft strength. In a scenario

where two storms had equivalent maxima in upper-level

divergence but differed by 3 km in depth, the inferred

updraft speed for the deeper storm would be 25% larger

than that of the shallower storm. Errors could be larger

if the divergence profile shapes differed considerably

between storms, which is not possible to adequately as-

sess with the data used in this study. Single-radar esti-

mates of divergence at high elevation angles (i.e., those

obtaining measurements in the upper troposphere) con-

tain additional error due to contributions from the ver-

tical component of the wind and hydrometeor fall speeds

to the measured VR, but these errors are expected to be

relatively small (or potentially helpful for diagnosing

relative differences in updraft strength given the re-

lationship between vertical velocity and the horizontal

divergence). Others have had success assuming upper-

level divergence is related to updraft strength, for ex-

ample, in hail size nowcasting (e.g.,Witt andNelson 1991;

Boustead 2008; Blair et al. 2011).

h. Performance evaluation

As outlined in section 3a, an evaluation of the ability

of a simple objective technique to identify storms ca-

pable of producing tornadoes before they occur was

performed using the product of two radar-derived ki-

nematic fields: divergence and rotation. To avoid being

overly restrictive with an arbitrary altitude threshold,

TABLE 2. All variables presented in this study, categorized by their source and type (physical or kinematic).

Radar Satellite Lightning

Kinematic Rotation extrema Cloud-top vorticity extrema —

Divergence extrema Cloud-top divergence extrema

Velocity spectrum width extrema

Physical Echo-top altitude (at a 40-dBZZH threshold) Visible texture rating Total flash density
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the column-maximum divergence is used in the product

calculation. The rotation in the divergence-rotation

product (maximum divergence multiplied with maxi-

mum rotation) is the maximum at upper and midlevels

(i.e., the largest value found anywhere at and above

4 km). Storms that exceed a single threshold value of this

product (i.e., [divergence3 rotation]$ threshold) for a

specified time period are flagged as potentially tornadic

and the time at which the condition is met is recorded.

For a predictive model, the resulting probability of de-

tection (POD), false alarm ratio (FAR), critical success

index (CSI), and bias forecast skill metrics for the storm

population are computed using Eqs. (1) through (4):

POD5
No. of correctly flagged storms

No. of tornadic storms
, (1)

FAR5
No. of incorrectly flagged storms

No. of storms flagged
, (2)

CSI5

�
1

12FAR
1

1

POD
2 1

�21

, and (3)

Bias5
POD

12FAR
. (4)

A perfect forecast has a 100% POD, 0% FAR, and a

CSI and bias of 1 (e.g., Roebber 2009). Correctly flagged

storms are tornadic storms identified prior to the oc-

currence of the first tornado and incorrectly flagged

storms are those flagged that never produce a tornado.

Mean and median lead times of the potentially tornadic

identification relative to the first occurrence of a tornado

(hereafter the flag lead time) within each storm are

also computed. Flag lead times reported in this study

are computed only for correctly flagged storms (i.e.,

missed tornadic storms are not included in lead time

calculations as having lead times of 0). Tornadic storms

with 0 or negative lead times are considered to bemissed

storms, which is accounted for in the POD. For evalu-

ation purposes, the first instance of a tornado warning

for a storm from the NWS served as a baseline poten-

tially tornadic identification for comparison with the

objective threshold exceedance method. Apart from

the difference in storm identification method, the per-

formance of the objective method and NWS tornado

warnings is evaluated in the same way. Thus, calculation

of lead times for these metrics may favor the objective

approach given the fact that NWS warnings are com-

monly issued for a finite duration of 30 or 45min, but the

corresponding POD, FAR, and CSI calculations do not

favor either method.

Performance evaluations can also be made for

varying storm environments, which is done here using

the number of tornadic storms for a given day when

the primary storm mode was discrete convection (i.e.,

supercells and ordinary cells). All cases for which the

primary mode was multicellular convection [typically

mesoscale convective systems (MCSs)] are analyzed

separately because the environments in which they

occur often differ considerably from supercells (e.g.,

see Flournoy and Coniglio 2019, and references therein).

The primary modes were subjectively evaluated,

where the mode that is dominant during the actively

tornadic period was chosen. MCSs are the primary

storm mode for five of the 27 cases (Table 1). Events

for which the dominant storm mode was discrete

convection are grouped into those having 1–5, 6–15,

or 161 tornadic storms.

3. Results

The analysis of 27 severe weather day cases, based on

both kinematic and physical metrics, shows that sig-

nificant severe and tornadic storms generally have

greater inferred upward motion and rotation than se-

vere and nonsevere nontornadic storms (Figs. 3 and 4).

The maximum divergence estimated from both radar

and satellite is substantially stronger for significant

severe nontornadic and tornadic storms compared to

that found in nontornadic nonsevere storms, especially

when there is a tornado on the ground (Figs. 3a,b).

Severe nontornadic storms show intermediate di-

vergence magnitudes relative to the significant severe

and nonsevere storm populations. Divergence for sig-

nificant severe nontornadic storms is similar to that

observed in tornadic storms prior to tornadogenesis,

suggesting little to no ability to distinguish between the

two storm types before a tornado has occurred. The

difference in median values between the significant

severe or tornadic storms (especially leading up to the

first tornado) and the nontornadic storms is greater for

the radar-estimated divergence than the satellite di-

vergence, with clear and consistent differences prior to

first tornado occurrence. Divergence estimates from

the radar and satellite sources here do not account for

density changes in the atmosphere with height (i.e.,

differences in storm depth); thus, inferring a stronger

updraft within storms containing larger divergence

involves an incompressible atmosphere assumption.

Though not shown, using an anelastic assumption

(where base state density varies with height) and de-

riving mass-flux divergence instead provides consis-

tent results with those shown here.

Differences between the divergence estimated from

ground-based radar and satellite imagery are likely due

to both the limited information detected by satellite
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(i.e., at cloud top only) and the differences in the spatial

resolution of the two datasets. It is also possible that

some of the difference can be due to the limitations of

the radar-derived divergence due to the previously

discussed issuewith the radar beam inclination. Although

the number of cases differs from the satellite to the radar

data, the cases where 1-min GOES-14 imagery was

available were previously analyzed separately for the

radar divergence with nearly identical results to the 27

cases in this study (not shown), indicating that the

differences between radar and satellite divergence are

not due to a sampling issue. Figure 4a, which shows the

maximum upper-level divergence, is nearly identical to

the column-maximum divergence in Fig. 3a, implying

FIG. 3. Boxplots for kinematic and physical metrics of upward motion derived from radar, satellite, and lightning

data. The notched box-and-whiskers show the 5th, 25th, 50th, 75th, and 95th percentiles of eachmetric for all severe

weather days for which data are available. Notches in the boxes emanating from the median values represent the

95% confidence interval for the median values.When the notches of different boxes within the same subplot do not

overlap, themedians are taken to be significantly different (Krzywinski andAltman 2014). The three leftmost boxes

in each subplot show distributions based on the 30-min periods around the maximum of a given variable for all

nontornadic storms (NT), severe nontornadic storms (SNT), and significant severe nontornadic storms (SSNT).

The five remaining boxes show distributions for tornadic storms at 30 and 15min prior to the first tornado (30BT

and 15BT), during the life cycle of all tornadoes (DT), and 15 and 30min after the last tornado (15AT and 30AT).

The number of observations contributing to each box in every figure, as well as the values for the 5 percentiles for

each box, can be found in the tables.
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that column-maximum divergence typically occurs at

altitudes above 8 km.

Physical metrics of strong updrafts show behavior

consistent with that observed from radar and satellite

divergence. Specifically, radar-observed 40-dBZ echo-

top altitudes (the maximum altitude reached by radar-

indicated precipitation of considerable size—e.g., large

rain drops or ice particles such as hail) imply that sig-

nificant severe nontornadic and tornadic storms have

stronger updrafts than weaker severe and nonsevere

nontornadic storms (Fig. 3c). This is not a surprising

result and is due to the fact that larger precipitation

particles have faster fall speeds, meaning stronger in-

cloud vertical motion is required to loft them to higher

altitudes. Identifying cloud-top altitudes from satellite

is challenging when storms reach the tropopause

(commonly the case for storms analyzed in this study)

due to the dependence of the relationship between

cloud-top temperature and altitude in the stratosphere

on both the resolution of the IR imager and the as-

sumed environmental temperature profile, which can

vary greatly in the extratropical lower stratosphere

(e.g., Griffin et al. 2016). Alternatively, it is possible to

measure the visible texture of the cloud top from sat-

ellite to indicate the tropopause-relative depth of OTs

(Bedka and Khlopenkov 2016). A high visible texture

rating implies a more complex texture, which is shown

here to be correlated with stronger upward motion and

higher tropopause-relative cloud tops (Fig. 5). Indeed,

the visible texture rating is also highest in the tornadic

FIG. 4.As in Fig. 3, but for divergence and rotation variables. The gray horizontal line in (e) represents the threshold

used for the objective tornadic storm identification method evaluated in section 3a.
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storms examined here during tornadoes, providing

further evidence of stronger upward motion than that

in nontornadic nonsevere storms (Fig. 3d). Tropopause-

relative IR cloud-top temperatures show similar charac-

teristics, but less contrast. Reduced contrast in IR is likely

due to the 16 times poorer spatial resolution (compared

to the visible) of the GOES imagery used in this study

(Fig. A1b). As observed for divergence, the differences

between physical characteristics of tornadic and non-

tornadic storms are reduced when considering obser-

vations for the most intense periods in significant

severe nontornadic storms (expected to be the most

extreme nontornadic storms).

Three additional metrics that are related to upward

motion in storms are shown to provide further evidence

of a unique relationship between both significant severe

nontornadic and tornadic storms and updraft strength.

First, column-maximum VR spectrum width from radar

is shown (Fig. 3e) due to its dependence on turbulence

that increases as the updraft strength increases (Doviak

and Zrnić 1993; Feist et al. 2019). Spectrum width shows

similar contrast between large values in significant severe

nontornadic and tornadic storms and much lower values

in nontornadic nonsevere storms to that observed for

column-maximum divergence, further supporting the in-

ference that significant severe nontornadic and tornadic

storms are characterized by stronger upward motion than

weaker severe and nonsevere nontornadic storms.

Second, stronger upward motion has implications

for lightning activity. Data from ENTLN show that

flash density is greatest in significant severe nontornadic

storms and similarly high in tornadic storms during

the time a tornado is occurring (Fig. 3f). This result is

comparable to the so-called lightning jump feature dis-

cussed in previous studies and linked to severe weather

(Williams et al. 1999; Schultz et al. 2009), although this

study evaluates the absolute value of flash density

rather than how rapid the lightning activity is in-

creasing over time. Despite the large flash rates ob-

served within tornadic storms, the lightning data also

show considerable overlap between the severe non-

tornadic and tornadic storm populations prior to the

first tornado, which indicates that this metric is better at

discriminating between severe and nonsevere rather

than tornadic and nontornadic storms.

Third, as an updraft intensifies within a rotating storm,

stretching of vertical vortex tubes within provides in-

creased vertical vorticity relative to storms with weaker

updrafts (Markowski and Richardson 2009), which is

demonstrated well in the radar observations of rotation

at all altitudes (Figs. 4b,d,f). Increased lightning activ-

ity and low-to-midaltitude rotation are currently being

used as variables of interest for probabilistic forecasts

of tornadoes (Smith et al. 2016). Here, of the three al-

titude layers of rotation analyzed, midlevel rotation

(Fig. 4d) shows the greatest potential for discriminat-

ing between significant severe and nonsevere (and

tornadic and weakly severe or nonsevere nontornadic)

storms, with similar separation between categories to

that found for radar-derived divergence. The lack of

separation in low-level rotation between tornadic and

nontornadic storm categories deserves some explana-

tion here. Considering the methods used to calculate

rotation outlined in section 2b (smoothing via 3 3 3

median filter and 5-gate running-mean and centered

differencing), there are minimum scales of rotation

that can be resolved and retained in the merged

multiradar volumes. In addition, because the native radar

data have higher azimuthal sampling in the lowest el-

evation scans, the minimum scales of rotation that can

be resolved are smaller at low levels and larger at mid-

and upper levels. In most cases, these minimum re-

solvable scales are 2–3 km at low levels and 3–6 km

at mid- and upper levels. Thus, since mesocyclone di-

ameters are commonly between 1 and 10 km (Stumpf

et al. 1998), the smallest mesocyclones will not be de-

tected in these data. Low-level observations here have

an advantage in the scales (andmagnitudes) of rotation

that can be retained due to the enhanced resolution

there compared to higher altitudes, so a lack of me-

socyclone detection does not explain the differences

between low-level and midlevel rotation. The minimum

threshold of ZH $ 30 dBZ applied to analyses of

FIG. 5. Tropopause-relativeZH5 10 dBZ echo-top altitude from

radar vs visible texture rating from satellite imagery for all 27

severe weather days. Each box-and-whisker represents the 5th,

25th, 50th, 75th, and 95th percentiles of the echo-top altitude

distribution at a specified range of visible texture ratings. Num-

bers at the bottom of each box represent the number of con-

tributing 1-min observations.
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rotation could also be a source of reduced discrimi-

nation at low levels, since strong rotation can often

be found within weaker echoes at such altitudes. Thus,

we did evaluate rotation using a weaker threshold of

ZH $ 10 dBZ, which did show some increases in low-

level rotation for tornadic storms overall, but also an

increase in the spread of rotation values for all storm

populations (not shown).

Evaluation of a simple objective short-term tornadic
storm forecast product

While the statistical evaluations in Figs. 3 and 4 show

that radar-derived divergence and rotation provide the

largest separation between tornadic and weakly severe

or nonsevere nontornadic storms prior to tornado-

genesis, they do not evaluate the potential usefulness of

the variables for real-time discrimination. The figures

also demonstrate that tornadic and significant severe

nontornadic storms show little separation, but both

populations are small in number compared to the more

prevalent weakly severe and nonsevere storms. Given

these results and the societal relevance of tornadoes, an

evaluation of the ability of a simple objective tech-

nique based on the product of radar-derived rotation

and divergence to identify storms capable of producing

tornadoes before they occur is warranted. Although

low-level rotation shows significant differences be-

tween the nontornadic categories and the tornadic

periods, the limited number of observations available

compared to that for mid- to upper-level rotation (see

Table 3) leads to the exclusion of low-level rotation in

the product of rotation and divergence here. To pro-

vide context for this objective threshold method for

storm discrimination, performance results (i.e., the

ability to identify observed tornadoes) are compared

with the first tornado warning given to each storm by

the responsible National Oceanic and Atmospheric

Administration (NOAA) NWS forecast office, which

serves as a metric of the first public recognition that a

storm was potentially tornadic by forecasters. Note

that the first warning is used here as a short-term

forecast of a storm’s potential to become tornadic for

context only, not to be confused with the evaluations

conducted by the NWS of the performance of all indi-

vidual warnings, which aim to evaluate whether or

not a warning encompassed the time of an observed

tornado. The tornado warnings are linked to the storm

tracks generated for this study, so the exact same

storms are analyzed for both the radar-based and

warning-based methods.

As outlined in section 2h, the divergence-rotation

product is based on column-maximum divergence and

the maximum of rotation from mid- and upper levels. It

was found that a rotation-divergence product threshold

of 42 3 1026 s22 is comparable to the cumulative per-

formance of the NWS warning-based potentially tor-

nadic storm flag over all 27 severe weather days (see

Figs. 4e and 6). This decision was arbitrarily made to

facilitate direct comparison between the objective

threshold method and the NWS warning-based method.

TABLE 3. The number of 1-min observations contributing to boxplots in this study.

Figure Nontornadic

Nontornadic

severe

Nontornadic

significant severe

30min before

first tornado

15min before

first tornado

During

tornado

15min after

last tornado

30min after

last tornado

Fig. 3a 125 615 16 373 3256 961 1164 6207 1053 817

Fig. 3b 15 307 2215 558 112 138 541 93 54

Fig. 3c 128 713 16 585 3318 961 1164 6210 1058 821

Fig. 3d 21 372 3221 735 117 232 977 168 119

Fig. 3e 125 671 16 355 3281 961 1164 6210 1053 821

Fig. 3f 36 212 5284 1177 185 226 844 206 130

Fig. 4a 122 414 16 260 3272 955 1164 6135 1041 796

Fig. 4b 120 454 15 739 3287 953 1159 6134 1040 792

Fig. 4c 96 926 13 586 2672 825 983 5243 863 672

Fig. 4d 121 654 16 056 3220 951 1149 6123 1049 817

Fig. 4e 121 151 16 143 3338 953 1159 6134 1040 792

Fig. 4f 44 429 6710 1431 378 465 3243 424 316

Fig. A1b 24 699 2658 608 223 269 1086 231 170

Fig. B1a 231 963 15 850 2648 275 345 878 260 205

Fig. B1b 103 295 13 164 2289 224 290 745 195 158

Fig. B1c 220 861 15 224 2589 255 331 844 253 195

Fig. B1d 231 293 15 595 2653 275 345 878 260 205

Fig. B1e 232 414 15 790 2644 275 345 878 260 205

Fig. B1f 220 677 15 282 2588 260 331 845 253 195

Fig. B1g 238 546 16 080 2648 275 345 878 260 205

Fig. B1h 229 796 15 515 2648 275 345 878 260 205
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From Fig. 6a, 5-min time period of the divergence-

rotation product exceeding the threshold is deemed

sufficient for the objective threshold technique, since the

product did not appear to be greatly affected by random

time variations (i.e., noise).

For objective divergence-rotation thresholds ranging

from 5 3 1026 to 80 3 1026 s22 applied to data from all

27 severe weather days, the CSI largely varies between

0.1 and 0.2 (Fig. 6). In comparison, the CSI of the NWS

warning-based method is ;0.13 (indicated by the black

circle in Fig. 6). The objective threshold method

achieved a comparable CSI to the NWS method at a

POD of approximately 58.3% and an FAR of approxi-

mately 85.9%, while the POD and FAR based on the

NWS method are approximately 51.7% and 84.9%,

respectively. The mean flag lead time is 43min using

the objective threshold method, while the median flag

lead time is 35min. Similar performance (skill) with

positive lead time by the objective method indicates

that the divergence-rotation product provides a com-

parable ability to discriminate between tornadic and

nontornadic storms prior to tornadogenesis.

The single-value divergence-rotation threshold cal-

culated from the cumulative performance of all 27 days

is applied to groupings based on the number of tornadic

storms for a given case (Table 4). The two lower-impact

groupings (1–5 and 6–15 tornadic storms) showed both

higher POD and FAR than the overall performance,

with slightly lower skill. Though the POD decreases

from ;70% to ;60% for the high-end days (those with

161 tornadic storms), the FAR also decreases by a

considerable amount, which in turn increases the skill of

the objective method to 0.19. The performance de-

creases for the objective threshold method when the

dominant storm mode is an MCS. Namely, the lowest

POD and highest FAR values are found in these cases,

with the objective threshold method showing the poorest

performance. However, the median flag lead times from

the objective threshold method are still the same as the

overall median flag lead times from the 27 cases. These

results reveal that the ability of the objective threshold

method to discriminate between tornadic and nontornadic

storms is greatest in discrete cases (i.e., supercell storms)

and the lead time of discrimination is relatively insensitive

to the variation in event type.

To illustrate the spatial appearance of the objective

threshold evaluation, maps of instantaneous fields at

20-min intervals from the 31 May 2013 event are shown

in Fig. 7. Areas exceeding the single-value divergence-

rotation threshold are shown in purple in each map.

Storms 1 and 4 exceed the threshold for extended pe-

riods of time and are each responsible for producing

several tornadoes (times indicated in each map), while

storms 2 and 3 briefly exceeded the single-value

threshold and never or only once produced a tornado,

respectively. All four storms were tornado warned by

the NWS for some time during their life cycles. The

southern storm (labeled 1) produced an EF3 tornado

near El Reno, Oklahoma, at 2303 UTC, as well as an

EF0 tornado shortly prior to the EF3 tornado. The first

exceedance of the divergence-rotation product for

storm 1 was observed at 2150 UTC and the divergence-

rotation product exceeded the threshold value over a

larger area for storm 1 than the remaining storms, both

prior to and especially during the EF3 tornado.

4. Summary and discussion

This study employed radar, satellite, and lightning

observations from a large dataset of more than 7000

storms to examine the ability of modern, high-resolution

remote sensing data to objectively discriminate between

severe and nonsevere storms, with an additional focus

on severe storms that produce tornadoes. It was found

that radar-observed/derived physical and kinematic

characteristics routinely enable discrimination be-

tween significant severe or tornadic and nonsevere

nontornadic storms, with indications from all datasets

that inferred upward motion is strongest and rota-

tion is fastest in tornadic storms during the occurrence

of a tornado (see Figs. 3 and 4). Significant severe

FIG. 6. Performance diagram for the objective threshold and

NWS warning-based methods. Solid black lines are lines of con-

stant CSI. The dashed lines represent bias, where values.1 signify

overforecasting and values ,1 signify underforecasting. Colored

lines show the performance of the objective threshold method at

multiple time periods (5, 15, and 30min) of exceedance for di-

vergence-rotation product threshold values ranging from 53 1026

to 80 3 1026 s22. The open black circle shows the cumulative

performance for the 27 severe weather days for the NWS warning-

based method.
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nontornadic storms were found to broadly overlap

with tornadic storms in most observations, but the

size of the significant severe nontornadic population is

relatively small. While the tornadic and nontornadic

discrimination results are broadly consistent in both

radar and satellite-derived flow observations, larger

differences were seen between the storm categories in

the radar observations. The separation between the

TABLE 4. Values of the performance metrics for the rotation-divergence product using a threshold of 42 3 1026 s22 [where NWS skill

(CSI) was matched using data from all 27 cases]. Here, values are shown for the performance when the threshold was used for all 27 cases,

cases dominated by MCSs, and cases grouped by the number of tornadic storms that occurred.

POD (%) FAR (%) Mean flag lead time (min) Median flag lead time (min)

27 cases 58.30 85.85 43.0 35

MCS 32.00 92.52 38.4 35

1–5 tornadic storms 69.57 87.30 54.4 47

6–15 tornadic storms 69.23 87.20 39.5 34

$16 tornadic storms 58.88 77.90 44.8 34

FIG. 7. Example maps of the radar divergence-rotation product valid 31 May 2013 in Oklahoma and Kansas in

the time window from 2220 UTC to 0000 UTC 1 Jun 2013 (at 20-min intervals). All values above the threshold of

42 3 1026 s22 are colored purple, values between 25 and 42 3 1026 s22 are shown in pink, and any values below

25 3 1026 s22 are colored blue. Storms of interest are labeled in the different panels and tornado reports (and the

state counties in which they occurred) are noted in eachmap. 15- and 45-dBZ 0–5 km column-maximum reflectivity

values are contoured in black (increasing thickness for increasing reflectivity).
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tornadic and nontornadic storm characteristics was

found to be large enough such that a simple objective

threshold method based on the product of radar-derived

storm divergence and rotation was able to provide early

indication of potentially tornadic storms with compa-

rable performance to indications based onNWS tornado

warnings (see Fig. 6).

Previous studies have shown somewhat similar sepa-

ration between storm categories using environmental

measurements from numerical model analyses and

forecasts, such as the significant tornado parameter (e.g.,

Thompson et al. 2003). These studies typically isolate

environments based on the most intense storm within

close proximity to the model grid point. However, as

outlined in section 1, it is common to find both tornadic

and nontornadic (or severe and nonsevere) storms

within very similar environments, which makes it chal-

lenging to use these metrics for objective storm dis-

crimination. Analysis of such environmental variables

was conducted during the course of this research, but

greater overlap, and thus weaker discrimination, be-

tween storm categories was found compared to that

provided by the radar-observed/derived physical and

kinematic characteristics (not shown).

With respect to tornadic versus nontornadic storms,

the results of this study agree with the current under-

standing of the three-step process for tornadogenesis

within supercells (Markowski and Richardson 2009;

Davies-Jones 2015). Namely, the first step in a storm’s

evolution to become tornadic is the development of

a strong midlevel circulation, which is found rou-

tinely in the radar observations at long lead times to

tornadogenesis (see Fig. 4d). The second step for a

tornadic storm is the development of a strong near-

surface circulation as a result of processes occurring

as air descends through the low-level outflow. The third

and final step to becoming a tornadic storm is having this

near-surface rotation come into alignment with in-storm

perturbation pressure gradients associated with rotation

aloft, that lift the air and contract it to tornado strength

(Markowski and Richardson 2014). Themaximum values

observed in almost all physical and kinematic metrics

evaluated here being associated with time periods during

observed tornadoes is evidence of the extreme and deep

rotating updrafts associated with tornadogenesis in the

conceptual model.

Given the extensive knowledge base that exists for

severe, nonsevere, tornadic and nontornadic storms and

the discussion given in the previous paragraph, it is not

surprising to find that, on average, significant severe

nontornadic and tornadic storms have stronger inferred

updrafts and greater rotation than nonsevere non-

tornadic storms. These findings are in agreement with a

similar argument for tornadic storms that has recently

been made for an association between the strength of a

storm’s mesocyclone and the width of the updraft, which

Trapp et al. (2017) tied to tornado strength based on

numerical simulations of tornadic storms. As shown in

the example maps of the divergence-rotation product

(Fig. 7), the storm responsible for the 2013 El Reno,

Oklahoma, EF3-tornado was associated with a higher

area of divergence-rotation threshold exceedance than

nearby storms with weaker tornadoes, which may be an

indication of a broader updraft within the El Reno

storm. Future studies should investigate the relationship

between metrics of updraft width and tornado strength

in observations.

One caveat of this study is that only 27 events from a

period spanning 5 years were evaluated, with most

events occurring during the April–June time period.

Thus, to demonstrate that our methods for case selec-

tion were not inherently biased, an analysis based on 22

additional severe weather days that were randomly se-

lected from a single year (2011) is included in appendix

B. The results from these cases are generally consistent

with that presented above and further support the ar-

gument that our case selection for the events analyzed

throughout the paper was not biased.

Another caveat of this analysis is the focus on single-

polarization radar variables. While several dual-

polarization variable extrema were investigated during

the study summarized here, none of this analysis yielded

statistically significant differences between severe cate-

gories and was therefore not reported. A lack of signif-

icant differences could be due to insufficient diagnosis of

dual-polarization signatures associated with tornadoes

using extrema alone. It is also possible these signatures

are sufficiently small in scale such that they are

smoothed out in the gridded radar dataset. Neverthe-

less, dual-polarization radar observations and their

utility for severe and tornadic storm discrimination

should be investigated further in future work.

In the tornado warning process, the NWS forecaster

faces two primary challenges: timely identification of

tornadic storms, and production of spatially concise

warnings that sufficiently identify locations likely to be

affected by a tornado. The objective system developed

here can only help with the former, as the physical con-

nection between strong divergence near the storm top

and the eventual development of rotation near the sur-

face is unknown and is required to confirm the eventual

presence and approximate location of a tornado.

Furthermore, this study has shown that while weakly

severe and nonsevere nontornadic storms are often

considerably different than tornadic storms in radar and

satellite observations, significant severe nontornadic
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storms (those most likely to be nontornadic supercells)

do not differ considerably from tornadic storms prior to

tornadogenesis. Thus, additional work is required to

evaluate the utility of the physical and kinematic radar

observations (especially those at mid- and upper levels)

for the tornado warning decision making process. Fur-

thermore, while the objective method of potentially

tornadic storm detection using the divergence-rotation

product was found to perform at a skill similar to NWS

warnings, the true value of this metric for the warning

decision making process should be evaluated in greater

detail in future studies. Namely, this work would benefit

from increasing the number of cases to reduce uncertainty

and include greater representation of observed seasonality

and convective mode. Observing system simulation ex-

periments (OSSEs), which have been used to estimate

radar multi-Doppler wind retrieval uncertainties (e.g.,

Potvin et al. 2012), may also be helpful for improving

understanding of the limitations of and uncertainties in

the divergence-rotation product.

One potential barrier to implementing the divergence-

rotation product evaluated here in an operational setting

is the necessary step of dealiasing radial velocity fields,

which is the most crucial and time-consuming element of

the process. However, dealiasing is commonly executed

in real-time within the software used by forecasters. In

addition, while the divergence-rotation product was cal-

culated from multiradar composites, it could easily be

implemented using single-radar observations. If similar

methods to this study are used for computing divergence

and rotation, differences between the magnitude of the

product in single-radar fields and the multiradar com-

posites are expected to be minimal, but it is necessary to

evaluate the product frommultiple neighboring radars to

achieve similar vertical sampling.One aspect that was not

investigated in this study is the development of a variable

divergence-rotation threshold for the objective method

to account for potentially relevant factors such as sea-

sonality, location, or storm mode. It is likely that the

threshold found here is not ‘‘one size fits all’’ but will

vary based on such factors as evident by the variation in

performance between case types (Table 4). Again,

further research is needed to examine the best way to

utilize these results in an operational setting.

In conclusion, these findings provide an opportunity

for improving the early recognition of significant se-

vere and potentially tornadic storms from modern

radar, satellite, and lightning observations. Increases

in the spatial and temporal resolution of visible and IR

satellite imagery now available following the transi-

tion of GOES-16 to operations in January 2018 will

likely demonstrate improved capability to infer up-

draft intensity in the future. There are ongoing efforts

to investigate these metrics further using machine

learning techniques, which will likely yield a greater

performance than the simple objective threshold

technique introduced here.
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APPENDIX A

Tropopause-Relative Infrared Brightness
Temperature

Since IR brightness temperatures serve as a proxy

for cloud-top height and can help to indicate the depth

of overshooting tops (and thus, the strength of upward

motion within convection), we did evaluate the po-

tential of brightness temperatures to discriminate

between severe and nonsevere (and tornadic and

nontornadic) storms. IR brightness temperature did

not show an ability to discriminate between severe

and nonsevere and tornadic and nontornadic storms.

A storm with a cold cloud top does not indicate that

the storm will necessarily be severe or tornadic.

Figure A1a shows storms from the same example as in

Fig. 2. The northeastern-most storm was producing a

tornado at the time thatmapwas valid for, while the other

storm with a cold cloud top (deep blue shading) on the

Kansas–Nebraska border only produced a few;1-in. hail

reports and a 52-kt wind report. One of the southern

storms also produced a tornado at a later time, but its

minimum brightness temperature was only 3K colder

than at this time,whichwas considerably warmer than the

Kansas–Nebraska border storm that never produced a

tornado. Note also that anvil regions well removed from

precipitation echoes are comparably cold to the strong

convective cores, which complicates the use of IR tem-

perature thresholding for severe storm discrimination.

Theminimum IR brightness temperature fromGOES

within a storm is calculated and compared with the

temperature at the tropopause in order to investigate

the minimum tropopause-relative temperature of the

cloud tops. Generally, if the tropopause-relative cloud-

top temperature is negative, the storm is penetrating

into the stratosphere.

The tropopause temperature was extracted from

Rapid Update Cycle (RUC) or Rapid Refresh (RAP)

hourly output (Benjamin et al. 2004, 2016). TheRUC/RAP

models have a horizontal resolution of 13 km and

50–51 vertical levels, and were retrieved from the Na-

tional Centers for Environmental Prediction (NCEP;

ESRL 2012). The temperatures from RAP/RUC were

TABLE B1. As in Table 1. Dates, number of storms, number of tornadic storms, number of tornadoes, dominant stormmode (discrete or

mesoscale convective system), and the longitude–latitude coordinates of the analysis domain for the randomly selected 2011 severe

weather days.

Date

No. of storms

(No. severe)

No. of tornadic storms

(No. of tornadoes) Dominant storm mode

Analysis domain coordinates

[lon0, lat0; lon1, lat1] (8W, 8N)

25 Jan 2011 665 (18) 6 (7) MCS [ 84.0, 25.0; 80.0, 31.0]

24 Feb 2011 547 (97) 10 (19) Discrete [ 95.0, 31.0; 82.0, 38.5]

5 Mar 2011 501 (8) 4 (7) Discrete [ 96.0, 28.5; 86.5, 34.5]

19 Mar 2011 102 (10) 2 (2) Discrete [103.5, 32.0; 78.5, 35.5]

29 Mar 2011 1101 (45) 2 (3) Discrete [ 94.5, 28.5; 84.5, 36.5]

09 Apr 2011 296 (34) 7 (23) Discrete [ 98.5, 40.5; 90.0, 45.5]

21 Apr 2011 113 (7) 3 (5) Discrete [104.5, 28.5; 96.5, 35.5]

26 May 2011 1415 (192) 12 (14) MCS [ 91.5, 29.5; 74.0, 43.0]

29 May 2011 346 (47) 3 (4) MCS [ 94.0, 40.0; 81.5, 45.5]

1 Jun 2011 351 (48) 4 (7) Discrete [ 80.5, 39.5; 67.0, 46.5]

10 Jun 2011 1016 (74) 1 (1) Discrete [ 97.0, 37.0; 80.5, 42.0]

12 Jun 2011 557 (41) 9 (12) Discrete [108.0, 38.0; 74.5, 47.5]

27 Jun 2011 216 (8) 2 (2) Discrete [ 85.5, 36.5; 79.5, 42.0]

29 Jun 2011 199 (12) 2 (2) Discrete [117.0, 43.0; 104.0, 49.0]

17 Jul 2011 241 (17) 4 (8) Discrete [104.0, 44.0; 93.5, 49.0]

26 Jul 2011 1416 (50) 4 (7) Discrete [104.0, 40.0; 69.5, 47.0]

2 Aug 2011 212 (1) 1 (1) Discrete [ 84.5, 25.0; 80.0, 30.5]

17 Sep 2011 488 (15) 1 (3) Discrete [102.5, 31.5; 94.0, 37.5]

7 Oct 2011 425 (21) 3 (4) Discrete [104.0, 34.0; 95.5, 43.0]

7 Nov 2011 552 (24) 2 (15) MCS [103.0, 32.0; 92.5, 38.0]

21 Dec 2011 101 (1) 1 (1) MCS [ 89.0, 30.0; 82.5, 35.5]

22 Dec 2011 632 (21) 10 (18) MCS [ 93.5, 29.0; 83.0, 35.0]

Total 11 492 (791) 93 (165) – –
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linearly interpolated to the radar-based storm tracks in

space and time for analysis.

Although there is considerable overlap between the

categories for the minimum IR brightness temperature,

it is worth noting that the 5th percentile of the tornadic

category is much colder than the other categories

(Fig. A1b). This implies that tornadoes seldom occur

when cloud tops are warm relative to the tropopause,

which differs from the severe and significant severe

nontornadic categories. WhileGOES-13/14 data cannot

FIG. B1. As in Fig. 3. Boxplots for the 22 randomly selected cases from 2011.
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resolve the coldest temperatures due to its spatial res-

olution, the data indicate that cloud tops are relatively

cold for tornadic storms on average. After updraft in-

tensification while the storm is tornadic, there is a lot of

cold outflow generated, resulting in a smaller range of

values after the tornado dissipates.

APPENDIX B

Additional Cases

An analysis of 22 randomly selected severe weather

cases from 2011 (Table B1) supports the general result

from this study, though the upper-level variables show

less separation between the most intense period of the

nontornadic significant severe storms and the tornadic

storms (Fig. B1). These cases were tornado days that

were randomly picked throughout the year. At least one

case from each month of the year is included to account

for potential seasonality in tornadic and nontornadic

storm characteristics. This analysis suggests that there is

an important seasonality to the divergence-rotation

threshold, as the separation between storm populations

remains similar to the results presented in the main

text, but all the boxes are shifted downward (i.e.,

magnitudes of each metric are smaller).
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Polarimetric tornado detection. J. Appl. Meteor., 44, 557–570,

https://doi.org/10.1175/JAM2235.1.

Schmit, T. J., and Coauthors, 2013: Geostationary Operational

Environmental Satellite (GOES)-14 super rapid scan opera-

tions to prepare forGOES-R. J. Appl. Remote Sens., 7, 073462,

https://doi.org/10.1117/1.JRS.7.073462.

——, P. Griffith,M.M.Gunshor, J.M.Daniels, S. J. Goodman, and

W. J. Lebair, 2017: A closer look at the ABI on the GOES-R

series. Bull. Amer. Meteor. Soc., 98, 681–698, https://doi.org/
10.1175/BAMS-D-15-00230.1.

Schultz, C. J., W. A. Petersen, and L. D. Carey, 2009: Pre-

liminary development and evaluation of lightning jump

algorithms for the real-time detection of severe weather.

J. Appl. Meteor. Climatol., 48, 2543–2563, https://doi.org/

10.1175/2009JAMC2237.1.

——, L. D. Carey, E. V. Schultz, and R. J. Blakeslee, 2017: Kine-

matic and microphysical significance of lightning jumps versus

nonjump increases in total flash rate. Wea. Forecasting, 32,

275–288, https://doi.org/10.1175/WAF-D-15-0175.1.

Smith, T. M., and K. L. Elmore, 2004: The use of radial velocity

derivatives to diagnose rotation and divergence. 11th Conf.

on Aviation, Range, and Aerospace, Hyannis, MA, Amer.

Meteor. Soc. P5.6, http://ams.confex.com/ams/pdfpapers/

81827.pdf.

——, and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS)

severe weather and aviation products: Initial operating ca-

pabilities. Bull. Amer. Meteor. Soc., 97, 1617–1630, https://

doi.org/10.1175/BAMS-D-14-00173.1.

Starzec, M., C. R. Homeyer, and G. L. Mullendore, 2017: Storm

labeling in three dimensions (SL3D): A volumetric radar

echo and dual-polarization updraft classification algorithm.

Mon. Wea. Rev., 145, 1127–1145, https://doi.org/10.1175/

MWR-D-16-0089.1.

Stensrud, D. J., and Coauthors, 2009: Convective-scale Warn-on-

Forecast system: A vision for 2020. Bull. Amer. Meteor. Soc.,

90, 1487–1499, https://doi.org/10.1175/2009BAMS2795.1.

——, and Coauthors, 2013: Progress and challenges with Warn-

on-Forecast. Atmos. Res., 123, 2–16, https://doi.org/10.1016/

j.atmosres.2012.04.004.

——, J. V. Cortinas Jr., and H. E. Brooks, 1997: Discriminating

between tornadic and nontornadic thunderstorms using me-

soscale model output. Wea. Forecasting, 12, 613–632, https://

doi.org/10.1175/1520-0434(1997)012,0613:DBTANT.2.0.CO;2.

Stumpf, G. J., A. Witt, E. D. Mitchell, P. L. Spencer, J. T. Johnson,

M. D. Eilts, K. W. Thomas, and D. W. Burgess, 1998: The

National Severe Storms Laboratory mesocyclone detection al-

gorithm for theWSR-88D.Wea. Forecasting, 13, 304–326, https://

doi.org/10.1175/1520-0434(1998)013,0304:TNSSLM.2.0.CO;2.

Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and

P. Markowski, 2003: Close proximity soundings within su-

percell environments obtained from the Rapid Update Cycle.

Wea. Forecasting, 18, 1243–1261, https://doi.org/10.1175/1520-
0434(2003)018,1243:CPSWSE.2.0.CO;2.

——, B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012:

Convective modes for significant severe thunderstorms in the

contiguous United States. Part II: Supercell and QLCS

tornado environments. Wea. Forecasting, 27, 1136–1154,

https://doi.org/10.1175/WAF-D-11-00116.1.

Trapp, R. J., G. R. Marion, and S. W. Nesbitt, 2017: The regulation

of tornado intensity by updraft width. J. Atmos. Sci., https://

doi.org/10.1175/JAS-D-16-0331.1.

Vicente, G., J. Davenport, and R. Scofield, 2002: The role of oro-

graphic and parallax corrections on real time high resolution

satellite rainfall rate distribution. Int. J. Remote Sens., 23, 221–

230, https://doi.org/10.1080/01431160010006935.

Williams, E., and Coauthors, 1999: The behavior of total lightning

activity in severe Florida thunderstorms.Atmos. Res., 51, 245–
265, https://doi.org/10.1016/S0169-8095(99)00011-3.

Witt, A., and S. P. Nelson, 1991: The use of single-Doppler radar

for estimating maximum hailstone size. J. Appl. Meteor., 30,
425–431, https://doi.org/10.1175/1520-0450(1991)030,0425:

TUOSDR.2.0.CO;2.

2590 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 58

D
ow

nloaded from
 http://journals.am

etsoc.org/jam
c/article-pdf/58/12/2569/4884675/jam

c-d-18-0241_1.pdf by N
O

AA C
entral Library user on 11 August 2020

https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2
https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2
https://doi.org/10.1175/2008WAF2222159.1
https://doi.org/10.1175/2008WAF2222159.1
https://doi.org/10.1175/JAM2235.1
https://doi.org/10.1117/1.JRS.7.073462
https://doi.org/10.1175/BAMS-D-15-00230.1
https://doi.org/10.1175/BAMS-D-15-00230.1
https://doi.org/10.1175/2009JAMC2237.1
https://doi.org/10.1175/2009JAMC2237.1
https://doi.org/10.1175/WAF-D-15-0175.1
http://ams.confex.com/ams/pdfpapers/81827.pdf
http://ams.confex.com/ams/pdfpapers/81827.pdf
https://doi.org/10.1175/BAMS-D-14-00173.1
https://doi.org/10.1175/BAMS-D-14-00173.1
https://doi.org/10.1175/MWR-D-16-0089.1
https://doi.org/10.1175/MWR-D-16-0089.1
https://doi.org/10.1175/2009BAMS2795.1
https://doi.org/10.1016/j.atmosres.2012.04.004
https://doi.org/10.1016/j.atmosres.2012.04.004
https://doi.org/10.1175/1520-0434(1997)012<0613:DBTANT>2.0.CO;2
https://doi.org/10.1175/1520-0434(1997)012<0613:DBTANT>2.0.CO;2
https://doi.org/10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2
https://doi.org/10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2
https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2
https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2
https://doi.org/10.1175/WAF-D-11-00116.1
https://doi.org/10.1175/JAS-D-16-0331.1
https://doi.org/10.1175/JAS-D-16-0331.1
https://doi.org/10.1080/01431160010006935
https://doi.org/10.1016/S0169-8095(99)00011-3
https://doi.org/10.1175/1520-0450(1991)030<0425:TUOSDR>2.0.CO;2
https://doi.org/10.1175/1520-0450(1991)030<0425:TUOSDR>2.0.CO;2

